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In  this, the third, part we present a complete asymptotic analysis of the distribu- 
tion of velocity and electric potential in an electrically conducting liquid between 
two circular electrodes of finite diameter, 2b, when a current is passed between 
them. The electrodes are set opposite to each other in insulating planes, a distance 
2a apart, and a magnetic field is applied perpendicular to these planes. 

The asymptotic solution is obtained under the restriction that the Hartmann 
number M satisfies both the conditions M 9 1 and M*l 9 1, where 1 = b/a. It 
enables us to calculate the distribution of velocity and electrical potential 
throughout the flow field, and provides an expansion for the resistance R between 
the electrodes in descending powers of Mal, which is correct provided terms of 
order M-1 and (ZM*)-3 are neglected. Comparison of the theoretical results with 
experiment shows good agreement in the measurements of R and in the direct 
probe measurements of electrical potential within the fluid. This is one of the 
first experiments in which direct probe measurements of an MHD flow, as well 
as external measurements, have provided such a satisfactory confirmation of the 
theory. Direct measurements of the velocity, by means of a Pitot tube as in 
part 2, or by means of a hot-film anemometer undertaken by Malcolm (1968), 
agree less well with the theory. 

1. Introduction 
In  parts 1 and 2 of this paper Hunt & Williams (1968) and Hunt & Malcolm 

(1968) have examined some of the interesting fluid dynamic and electrical pheno- 
mena which occur when a current is passed through an electrically conducting 
fluid placed between two planes which contain various kinds of electrode, and 
a magnetic field is imposed perpendicular to the planes (see figure 1). The physical 
effects that occur are caused by the tendency of the current lines to bulge out 
from the region between the electrodes so as to produce an electromagnetic j x B 
force on the fluid. In the case of circular electrodes, as explained in part 2, the 
final outcome of the various processes involved is that in narrow layers joining 
the rims of the electrodes an intense circumferential jet is created and the current 
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lines are confined to the cylinder joining the electrodes. In part 1 the effects of 
line and point electrodes were examined theoretically and in part 2 the analysis 
was extended to include the effects of circular electrodes which are perfectly 
conducting and have finite radius. 

Hunt & Malcolm did not obtain a complete solution to the analytical problem, 
but were able to draw some conclusions of physical interest by means of an 
approximate asymptotic anaIysis when the Hartmann number M 9 1. Some 
experiments were then described in which direct measurements of velocity and 
electric potential were made in the fluid. The experiments were difficult to 
perform, and liable to many errors, the art of measuring magnetohydrodynamic 
flows being in such a primitive state. However, some of the measurements were 
sufficiently repeatable and reliable and the Hartmann numbers were sufficiently 
high ( M  > 600) that the conclusions of the theory could be tested. Since the 
experimental results broadly agreed with these conclusions, a complete asymp- 
totic analysis to produce actual values of the velocity potential, which could be 
compared with the experimental values, seemed worth while. Since the experi- 
ments of Hunt & Malcolm, Malcolm (1968) has made further and more detailed 
measurements of velocity using a new method, namely a specially adapted hot- 
film anemometer. With these further measurements a reliable theory is all the 
more necessary to compare the various experimental methods. 

Using the equations and the basic assumptions of Hunt & Malcolm, a thorough 
asymptotic analysis is presented in ss3-4 of this paper. A central feature of this 
analysis is the solution of the singular integral equation (3.28) which leads to the 
result that an intense current sheet emanates from an annulus of thickness of 
O(M-l) at  the electrodes’ edges, a surprising fact since the thickness of the shear 
layers is O(M-4). This phenomenon is analyzed in some detail in 4. For com- 
parison with the theory at  M 9 1, we present in § 3 an expression for the resistance 
when M = 0, and numerical results for the velocity and electric potential. In  5 
we compare the results of the theory with the experimental results of Hunt & 
Malcolm (1968) and Malcolm (1968) and find satisfactory agreement with the 
results of electric potential measurements but less satisfactory agreement with 
the results of direct measurements of velocity by Pitot tube and hot-film anemo- 
meter. Such discrepancies as cannot be explained by limitations of the experi- 
mental methods may be caused by the finite conductivity of the electrodes, 
which our analysis of 0 3 does not account for. 

2. Equations and boundary conditions 
We consider an incompressible fluid, of conductivity c and viscosity 7, occupy- 

ing the region between two parallel planes whose equations are z = & a  with 
respect to a set of cylindrical polar co-ordinates ( r ,  8, z )  (see figure 1) .  Electrodes 
are inset flush with each plane extending over the disks r < b,  while the remainder 
of each plane is assumed to be non-conducting, and a uniform magnetic field of 
flux density B, is applied in a direction perpendicular to them. A current I flows 
from one electrode to the other through the fluid, stimulating it into motion. 
The equations of magnetohydrodynamics governing the velocity w of the fluid 
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and the induced magnetic field h may, following Hunt & Williams (1968),  be 
written: 

(2.1) 
ah a2v 
ag p p  ) ag2’ 

O = M - + D (  v +- 

where 

F m m  1. Diagram showing the position of the electrodes, the co-ordinate 
axes and the various regions used in the asymptotic analysis of $ 3 .  

In equations (2 .1)  and ( 2 . 2 )  we have assumed that radial and axial velocities 
are zero, so that the only components of velocity are azimuthal and the only 
components of current density are radial and axial. It was shown by Hunt & 
Malcolm (1968, p. 799)  that this condition is satisfied in practice if M $ 1 and 
the current I is sufficiently small. Adding (2.1) and (2 .2)  we obtain the familiar 
combined equation in (v + h) : 

--[p(v+h)]+ 
P ac 
M a  

(2.4) 

15-2 
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Boundary conditions 

The boundary conditions on the velocity v are simply 

v = O  at [ = + 1 .  (2.5) 

The boundary conditions on h, however, are more complicated and necessitate 
first considering the current distribution in the electrodes. Let the current distri- 
bution on the outside faces of the electrodes be 

h=fi(p)  at  g =  f(l+'T), (2.6) 

where t = a7 is the electrode thickness. Since j the current density, at g = 1 +T, 
is bounded 

The total current entering and leaving the electrodes is 

fl(0) = 0. 

b l a  
2nr - - (rh,) dr = Iwl(Z). =I,-, r ar 

Setting =f,(p) at 5 = f 1, 

it then follows that f,(p) =p- l  when p = I ,  

since no current leaves the electrodes via their side walls. 
We can now discuss the boundary conditions on h at 5 = f 1 in the fluid and 

note first of all that the value of h in the containing walls and the fluid are the 
same at  5 = k 1, so that (2.7) and (2.8) apply equally to h in the fluid. Nowf,(p) 
can be directly calculated when p > 1, for outside the electrodes the walls at 
6 = k 1 are insulating and therefore j, = 0. It follows that a(D/a{ = 0 and hence, 
from (2.3), 

1 

P 
h =f,(p) = - at f: = f 1, p > I ,  (2.9) 

there being no extra current source at  p = 1. If p < I ,  h is not known, but, from 
the condition that the radial component of electric field is the same in the fluid 
as in the electrode and (2 .5 ) )  we have the condition 

(2.10) 

where f and e refer to the fluid and electrode, respectively. 
It is now theoretically possible to calculate for any value of a, the distribution 

of current and velocity between the electrodes, given I andf,(p), using equations 
(2.1)) ( 2 . 2 )  and (2.5) to (2.10). However, we are mainly interested in using these 
equations and boundary conditions to analyze the flow in the simplest case 
where the electrodes are highly conducting. Fortunately this case corresponds 
closely to the experimental situation and has the additional advantage that v 
and h are independent of fl(p). Thus for the remainder of this paper we shall 

('vlO) by ah/ag = 0 at 6 = 1, p < 1. (2.11) 
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3. Asymptotic solution as M+co 

of v and h between the electrodes, under the assumptions that 
In  this section we shall determine the principal features of the distribution 

(a )  M B 1, ( b )  MtZ 9 1, and (c) ue7/u+ co. (3.1) 

The significance of the first of these conditions is that any primary (or Hartmann) 
boundarylayersonthewallsat 5 = & 1 arethincomparedwiththeirdistanceapart, 
of the second that the thickness of the shear layers joining the rims of the elec- 
trodes must be small compared with their radii and of the third that the ratio of 
the conductivity of the electrodes to the fluid is very large. In  general the con- 
ditions of any experiment will approximate to some of the criteria of (3.1) better 
than others; in the experiments of Hunt & Malcolm, M 2 175, TCTJU > 7 and 
MBZ 2 6, since I is smaller than unity. In  the asymptotic analysis below we only 
consider expansions of v and h in descending powers of Mil,  calculating a number 
of the leading terms for the various regions of the flow. The effect of a finite value 
of TUJU has been considered in a separate investigation and was found to be of 
little significance. 

Region (4) 
We begin the analysis by discussing region (4) of figure 1, i.e. the region where 
0 < p < I ,  151 < 1, although as usual in core flow studies regions (2c) and ( 2 4  
play a vital role in controlling the solution in region (4). In  region (4) 

from the size of the region and hence to a first approximation (2.1) and (2.2) 
reduce to 

(3.3) 

terms of relative order M-l being neglected. Now it follows from the boundary 
conditions and governing equations of 0 2 that h is an even function of 5 while 
v is an odd function of 5, so that 

Hence on substituting (3.3), (3.4) back into (2.1), (2.2) and retaining terms 
O(M-l) we find that 

f&) = 0. (3.4) 

v = - ( 5 / ~ ) q & A ) + O ( M - 2 ) ,  =fz(p)+O(M-2). (3.5) 

This solution while satisfying (3.1) does not satisfy the condition v = 0 at 5 = 4 1. 
We now consider the possibility that boundary layers in regions (2c) and ( 2 4  
can adjust v so that these conditions are satisfied. In  such boundary layers 
a/at; B 1 and (2.4) then has an additional complementary function of the form 

A ( p )  e-Mc. (3.6) 

(3.7) 

It immediately follows that a boundary layer in (v + h) can only exist near 
[ = - 1, so that 

v + h  =fz(p)-(5/:lM)~,(pfz)+O(M-2), 
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v+h - f 2 ( p ) + ( l / M ) D p ( p f 2 )  +(1/M)A,e-M(c+1)+O(M-2),  (3.8) 

and A ,  is a function of p to be found and is independent of M .  Similarly 

- h = - fz(P) - (5 /M)  Dp(Pfz) + (3.9) 

except near < = 1 ,  where 

w-h = - f 2 ( p ) + ( l / M ) D , ( p f 2 ) +  (1/M)A_e+lM(c-1)+0(M-2) ,  (3.10) 

and A- is a function of p to be found. Combining (3.8), (3.9) it follows that the 
boundary conditions on w, h at 5 = - 1,  namely (2.5) and (2.11)) are satisfied if 

A ,  = Dp(P f2 )  = 0. (3.11) 

Hence f2 (P)  = hP/12, (3.12) 

where h is a constant to be found. Note that these results may be generalized to 
include the effect of a finite conductivity, ge, in the electrodes. The argument is 
omitted but we conclude that (3.11) is replaced by 

(3.13) 

whencef,(p) may be calculated in terms offl(p). As already noted its effect is not 
important in the experiments. 

may now be calculated using (2.3))  (3.3) and (3.12) The electric potential, 
to give 

(3.14) 

Region ( 5 )  

Turning now to region ( 5 )  (p  > 1,  151 < 1) a similar line of argument can be 
adopted to that for region ( 4 )  except that now the boundary condition on his  that 

h = l / p ,  5 =  f 1, p > 1. (3.15) 
Hence (3.7) gives 

at  g = 1, so that in region (5) 

U P  = f 2 ( P )  - ( 1 / W  Dp(Pf2) + 

1 1 

P P 
f2(p) =- )  2, = 0, h =-, (3.16) 

whence CD 3 0, the relative errors being at most O(4I-l). 

Region ( 1 )  

There remains the discussion of region ( 1 )  together with its associated boundary 
layers on the planes of the electrodes. As things stand at the moment both h and 
@ are discontinuous asp --f 1 rf: in the limit M -+ co but we can make h continuous 
if we assume that A + 1. After examining various possibilities it appeared to us 
that a shear layer cannot be found to smooth out the discontinuity in h when M 



Some electrically driven jlows. Part 3 231 

is large unless h -+ 1 as M -+ 00. We therefore make this assumption and we shall 
find it leads to a consistent description of the flow field. We shall write, in fact, 

'2 + o ( M - ~ ,  ( 1 ~ 4 - 3 ) ,  
h 

1M* (lM3)2 
A =  1+'+- (3.17) 

where A,, A, are constants and then show that A,, A, are O( 1). Thus we assume that 
when M > 1 the changes in h are small across region (1). Since h is O( 1) the results 
(3.14) and (3.16) imply that the change in 4) across region (1) is O(1). 

The following change of variables is now introduced. Define 

v = ($'a(j3,[), p^ = i ( l - p ) M * ,  (3.18) 

where g(p^) is a function to be found and we have anticipated that the scale in the 
p direction is O(M-4). In  terms of p^,< the equations satisfied by A, 8 are 

a i  1 a28 1 azE 3 a 
ag pap2 ~ a g 2  4 ~ 2 ~ '  

aa i a 2 E  1 a20 3 E 

-+ +-- 

(3.19) -+ +-- ag 4ap2 Mac2 4Mp2'  

and the corresponding boundary conditions are 

a = a i p g  = 0, 6 = g(p^) at c =  & 1, p̂  > 0, ( 3 . 2 0 ~ )  

8 = A = O  at g =  ? 1, j3 < 0, (3.20b) 

a + o ,  E 3 0  as p^+ -00, ( 3 . 2 0 ~ )  

(3.20d) 

So far no approximations have been made in deriving (3.19) and (3.20) except 
for the two limits p̂  + & 00 but now we assume that the terms on the right-hand 
side of (3.19) may be neglected-i.e, we ignore terms of relative order M-l and 
M - l k 2 .  This assumption is valid over the region p̂  = O ( l ) ,  151 < 1, and then 
(3.19) leads to a single equation for 8 + g, namely 

with the solution 

(3.21) 

(3.22) 

where G,(t) is the limiting value of 0 + i in region 1 as 6 --f 1. Near 5 = 1 boundary 
layers in a and i can occur to adjust the values of 8 and as 6 + 1 in region (1)  
to the correct boundary conditions at  6 = 1. However, no boundary layer is 
possible in a+$, for the same reason as in (3.6), and hence 

G,(p^) = 0, p̂  < 0; G,(p^) = g@), p̂  > 0. (3.23) 
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A boundary layer is possible, however, near 5 = - 1 and analogously to (3.8) 

3 + = G,(p^) + B+(p^) ecM(5+l), (3.24) 
we then have 

where B+(p^) is a function of p^ to be found while G,(p^) is the limit of O + i  as 
5 +- 1 according to (3.22). 

(3.25) B+(p^) = -G,(p^) if p^ < 0, 

while g(p^) = G,(p^) +B+(p^) if p^ > 0. (3.26) 

On the other hand an analogous argument to (3.11) shows that if p^ > 0 

From (3.20) 

B+(p^) = 0 and hence g(p^) = G,(p^). (3.27) 

It then follows from (3.22), (3.23) and (3.27) that g(p^) satisfies the integral 
equation 

g(b) = ___ S g(t) exp - +(t - ~ ) z l  dt.  (3.28) 

Further, to obtain the boundary condition on g(p^) as p^ + 00, we use the fact 

1 "  

d(2n) 0 

that g(p^) = h at 1: = & 1. Then (3.20d) and (3.17) show that as p^ -+ co 

(3.30) If we now write 

then b(P) also satisfies the homogeneous integral equation (3.28). The boundary 

(3.31) 
condition becomes as p^+co, @ ( p ^ ) - p ^ - +  const., 

where the constant is unknown. 
Since we have no information, as yet, about region (3) there is no boundary 

condition on @(P) asp^ -+ 0. However, Stewartson (1968) found that, the condition 
(3.31) completely specifies the solution to (3.28)) which, in turn, determines the 
constant in (3.31). He found the asymptotic series for Q(p^) to be 

where 
m I 

[(s) = 2 rrS. 
n= 1 

(3.33) 

Thus the constant in (3.31) is C(+)/,/( 2m) ,  whence 

A, = ~ 4aiH = -2.3304 and 4h, = 3h;. (3.34) 
d(2n) 

Using the numerical data of Hammersley (1961)) who solved a similar integral 
equation, &p^) was calculated numerically and was found to agree with Stewart- 
son's (1968) asymptotic formuIae. 
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From (3.32) we immediately deduce that, whereasf2(p) = 111 when p = I ,  
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as ( I -p)  M* -+ O + .  (3.35) 
1 2 4 2  

f,(P) -+ 7 - jqp* + * 

This jump in f,(p) near p = 1 of 2 ,/2/12MB shows that a quantity of current 
O(M-hI) emanates from the narrow region (3) on the electrode, i.e. the same 
quantity of current (to an order of magnitude) that emanates from region (2). 
Since the width of region (3) is O(M-1) it  follows that the current density, j,, and 
electric field a$/& are O(M4). In the light of this result, namely that the change 
of f,(p) in region (3) is of the same order as that in region ( Z ) ,  it seems especially 
remarkable thatf,(p) in region (2) is o d y  a function of regions (1) and (4). These 
surprising changes in f2(p) in regions (2) and (3) are illustrated schematically in 
figure 2. 

11 

11 = 111 

1 P 1 

p = I  
FIGURE 2. A schematic graph of h(p)  a t  5 = f 1, showing the regions (2a)  and (3) in 
which the integral equation of $ 3  and the Wiener-Hopf problem of 5 4, respectively, have 
to be solved. 

The resistance R may now be calculated, where R is defined by 

2 6 $  A@ R=-=- 
I 27Tacr’ 

(3.36) 

and ’i: A$ = ‘i: A@[1/(27~aa)] is the potential at  5 = k 1. To calculate @ in region 
(4) we use (3.14) and (3.17): 

1 1 + - + + +  4 A, ... , :![ 1MB 12M 
so that the resistance is 

(3.37) 

(3.38) 

where R, = 2a/ncrb2 is the electrical resistance of a cylinder of fluid, length 2a 
and radius b. We note that the first term in the asymptotic expansion of (3.38) 
about M = co was obtained by Hunt & Malcolm (1968) and is independent of 
the properties of the electrodes. The error in (3.38) is of order M-l or (lM*)--3, 
whichever is the larger. 

The comparison between the theoretical prediction of R/R, and the experi- 
mental values is displayed in figure 3 and is discussed further in $ 5 .  
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the equation becomes 

(mi + n;) [(a - 1) + (3 - 2a) lm61 + (mL + n4) [(a - 1) 

+ lm;12+(2-a) ImL12]+a[m;mL2+n;nL2] = 0. (3.15) 

All the terms occurring in (3.15) are real and, if we write 

mi = rleiyl, mh = r,eiya, 
then (3.15) becomes 

rl cos y,[(a - 1) + (3 -2a) 41 +T,  cos ?,[(a- 1) +rZ, + (2 -a) ri] 

+ arlT2 cos (yl + Zy,). (3.16) 

Solving for rl, r2, y1 and y2 in terms of 6 and T and then substituting in (3.16) 

where (3.18) 

We immediately note from (3.17) that, if T 2 3, then, since all the terms are 
positive, there can be no real values of 6 satisfying the equation. This means 
that c = 0 is not an eigenvalue if T > Tcrit, where 

1 < Tcrit < 3. (3.19) 

Equation (3.17) was solved numerically and gave 

Tcrit + 1.0456. (3.20) 

Next we show that the left-hand side of (3.17) has a different behaviour in the 

Let us write (3.17) as P(6,T)  = 0. Then, when T = 1 
case T = 1 (i.e. zero magnetic field) as compared with the case T > 1. 

F(6, I )  = 6 + 2 $( 1 + 21/( 1 + a'))& - 2 2/( 1 + 6,). (3.21) 

For large values of 6 a(&, 1) - 2 4 2  64- 26, 

and is seen to be negative. When 6 = 0,  F has the value 8, so that the equation 
F ( 6 , l )  = 0 is deemed to have an odd number of real positive roots. In  fact there 
is only one root 6 = 4 ,/3 as is easily found from (3.21) by squaring twice to 
eliminate radicals. This is as found by Esch (1957), Tatsumi & Gotoh (1960) 
and Drazin (1961). 

On the other hand, when T > 1, then for large values of 6 

F(6,T) N (T+1){T+(T2-1)*}6,  

and is seen to be positive. When 6 = 0, F has the value 4(T + 1) which is also 
positive, so that if real positive roots exist they must be even in number. 
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-3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0 

(P - I )  M i  

FIQVRE 4. V;, = v e M h a a J ( q ) / I  against (p-Z) Mg. ((I) M = 1367, 6 = W97, 5 = 0.190. 
-, theoretical curves (zero-order and first-order). Experimental curves: - - - , results 
from Pitot tube; -.- , results from potential probe. ( b )  M = 212,390,5 = 0.50, I = 0.502. 
-, theoretical curves (zero-order and first-order). Malcolm’s experhentd curves: 
X-X, M = 390; 0-0, M = 212. 
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graphs of ql, against (p - 1 )  M i  = - 2p̂ , taking the values of 1, M and 5 used by 
Hunt & Malcolm, and by Malcolm, these being, in figure 4 (a) ,  

c = 0.97, M = 1367, 1 = 0.190, 

and in figure 4 ( b )  5 = 0.50, M = 390, 1 = 0-502. 

From these curves we note how rapidly the velocity rises near 5 = 1, a con- 
sequence of the result that in region (2) v = 0 for p < 1 or, in physical terms, the 
fact that no Hartmam boundary layer can form on the electrodes; at 5 = 0.50, 
it is interesting to observe that a small negative velocity is predicted by the 
theory. The experimental results are discussed in 3 5 .  

Tocalculate-@ we use (2.3) and the fact that in 
compared with a@/+ and Mv. Then 

region (1) ah/ag is O(M-')  

so that 

a@ 
- = MV = M(l/p)*O, 
aP 

= - M I '  ____ 21qq at 
-,IMB-2t' 

0 0 

-7 -6 - 5  -4  -3 -2 -1 0 1 2 3 
(P - I )  M!2 

FIQURE 5. - iZz@ against (p-Z) M4 for I = 0.190. -, theoretical curves (first-order 
only). Experimental points: A, M = 1367, [ = 0.97; X ,  M = 882, [ = 0.99; e, 
M = 1367,c = 0.99; Q, M = 1367, f; = 0.96; 0, M = 1550, f; = 0.50; 0. M = 1575, 
5 = 0-50. 

Then, neglecting terms of O(M-l) and O[(lM&)-3], 

To compute from (3.40) we had to compute vl) twice, a process possibly 
leading to some error. However, we found in our results that, when M = 00, 
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- $Z2@(l) = 0.9725 when p̂  = 3 and 6 = 0.97, and 0.4999 when p̂  = 3 and g = 0.50, 
whereas the correct values for - 2$2@(l) to match with in region (4) should have 
been 0.970 and 0.50, respectively. This indicates that the computations may be 
relied upon to within 1 %. 

In figure 5 we present graphs of our theoretical values of -@2@(l) against 
( p  - 1) M t  for the following values of 5 and M ,  with I = 0.190: 

5 = 0.97, 

5 = 0.50, 

M = 1367, 

M = 1550. 

These results, which are plotted together with the experimental values found by 
Hunt &, Malcolm, are compared in $5. 

4. The form of the solution near the edge of an electrode, region (3) 
The discussion in the previous section has shown that the discontinuity in h 

at p = I, as implied by the solutions in regions (4) and ( 5 ) ,  is smoothed out by 
a shear layer, region (l), of thickness O(M-)), except at  6 = f 1. Here, although 
the shear layer extends to the electrodes it only succeeds in reducing the dis- 
continuity in h from -46(+)/Z2J(2nM) to 2 J2/l2M*, from (3.34) and (3.35), 
where terms 0(M-l l2)  have been neglected. The physical interpretation of this 
surprising result is that a weak ring source of current, of strength 2I .,/2/lMt, 
is set up on one electrode at  p = I and a corresponding sink at  the other. Never- 
theless the current density must become large as M + co because the thickness of 
the ring source is o(M-4) and in fact, as we shall see, O(M-l). The aim in this 
section is to analyze the structure of the ring source at  6 = 1. For this purpose 
we make the following change of variables: 

x = *M(p  - I), y = *M( 1 - 6), 

and take the limit M + 00, keeping x, y, H ,  V finite. The net result is that the 
curvature of the electrode at  g =  1 and the effect of the other electrode at  
6 = - 1 may both be neglected. 

The governing equations for V and H reduce therefore to 

with boundary conditions 
aH 
aY 

V = 0, H = 0, if x < 0 and V = 0, - = 0 if x > 0, (4.3) 

at y = 0. 
co demand some care. First we 

note that the solution for 0 + h cannot have a boundary layer near 6 = 1 and so 
When y > 0 the conditions on V ,  H as x -+ 

V + H - + l  as x + - m ,  V+H-+O as z++co, (4.4) 
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for y > 0, to match with (3.23). On the other hand - 8 + i  can have a boundary 
layer near y = 1 and so to match with the analogue of (3.24), (3.25), (3.26), (3.27) 

H - V + l  as x +  -m, H - V ~ l - e - ~ u  as x +  +m. (4.5) 

The reader is reminded that a primary boundary layer cannot occur in the neigh- 
bourhood of the electrodes. 

In  order to  solve (4.2) subject to these boundary conditions we define 

H(x,O) = m ( x )  and = n(x) .  

Next we take theFouriertransformsof V ,  H, m ( x ) ,  n (x )  with respect to x, denoting 
the results by bars. Thus 

~ ( w ;  y) = J e-imv(z, y) dx, ~ ( x ,  y) = -'J e h x r ( w ;  y) dw. 
-m OD 

(4.7) 

r+B = BeY(l--P), where p = (w2+ l)t, (4.8) 

--m 2n -a 

Then, adding the two equations of (4.2) and using (4.5), 

p being real and positive when w is real. Similarly 

(4.9) a- j7 = ~ e - u ( l + ~ ) .  

Hence, subtracting (4.9) from (4.8) and differentiating with respect to  y, 

2z  = -2pm. (4.10) 

Here Ei is regular in the upper half plane I m o  > 0 since m(z) = 0 when 
x > 0 and ;ii is regular in the lower half plane Imw < 0 since n(x)  = 0 if z < 0. 
Now consider 

(4.11) 

whose inverse transform is 

e - E X  

if x < O  and -~ if x > 0, 
(1+€)4 

reducing to 
e-sds 

if x < O  and - 1  if x > O  (4.12) 

in the limit E + 0. From (4.9) the corresponding value of ;ii is 

- i)t z1 = 
(w - is) 

whose inverse transform clearly vanishes when x < 0 as required by (4.5). The 
only condition which a,, El fail to satisfy therefore is that Eil(x) 0 if x > 0 and 
this may easily be rectified by adding unity to the corresponding value of H .  
The fhal solution for H is then 

1 (4.13) 
m exp (iwx - gin - y(w2 + 1)d) 

w ( 0  + i)t 
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where the path of integration passes below the origin of w .  It may readily be 
verified that (4.13) satisfies all the required boundary conditions and we have 

when x c 0, which tends to unity as x + - 00 and behaves like 2( - z)4/ Jn as 
- x -+ 0. Thus H ( x ,  0) is continuous at  x = 0 with its null value when x > 0. 
Further, the singularity at  x = 0-  has the same structure as when M = 0, 
and indeed, in terms of 1 - p ,  is independent of M .  Finally, 

when x > 0; near x = 0, n(z) "N (nz)-*, and n(x)  -+ 1 + as x -+ m. 

5. Discussion 
In the experiments of Hunt & Malcolm (1968), distributions of electric poten- 

tial and velocity were measured in mercury held in a plastic container between 
copper electrodes. In  the apparatus two different values of 1, the ratio of the 
diameter of the electrodes to the distance between them, were obtained, 0.512 
and 0.190 respectively. The relative resistance of the electrodes to the fluid 
defined by cra/o,t was 0.049 and 0.130 respectively, so that we can regard the 
electrodes as being highly conducting. 

In order that the experimental results when M > 0 should be credible, measure- 
ments were made of the resistance R when M = 0, and then compared with the 
theoretical value. This measurement could only be made for the first apparatus 
in which 1 = 0-512, b = 8*25mm, g = 1-04 x 106mho/m, giving 

R = 40.7 x 5 0.5 x 10-60hms. (5.1) 

To calculate the theoretical value, the equation (2.3) with M = 0, namely 

a2h 1 a7t n a2h 

ap2 Pap P2 ac2 +- = 0, (5.2) -+---- 

has to be solved subject to the boundary conditions (2.9) and (2.11). This problem 
is equivalent to finding the capacity of a disk at  a potential Aq5 placed between 
two plates a t  zero potential, and, as such, has been extensively studied in the 
past (Tranter 1950, Collins 1960). The resistance, Ro, is found to be 

1 [ 21zg2 1;(3)13 
R - - 1--l+-+ ...I, - 2bg 47l (5.3) 

which, using the experimental values, gives 

R,, = 39.6 x 10-60hms. (5.4) 

The discrepancy between the experimental (5.1) and the theoretical results (5.4) 
may be caused by the fact that the walls containing the fluid tend to confine the 
current lines and so raise the value of R. 
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The main purpose of the experiments was to  confirm the interesting phenomena 
which occur when M B 1 as predicted by the approximate analysis of Hunt & 
Malcolm. Since then we have developed the asymptotic theory described in 
$4 3-4 and we now compare the results. The experimental results least subject 
to error are those we ought to refer to first in assessing the experiments in the 
light of the theory, and therefore we consider the results in figure 3, namely the 
ratio R/Rm against 1/1MB. We see that the agreement between the theoretical 
line and the experiment is remarkable (at least by the standards of magneto- 
hydrodynamics experiments), any systematic discrepancy being under 3 yo. 

0.8 

0.6 

0.2 

-0.2 

I 0 8  0% 0.4 0.2 O\ -0.2 -0.4 

FIGURE 6. -+Zz@ against g on the line p = 0. -, theoretical ciwves (which include 
fist-order and second-order terms). 0, I = 0.512; x ,  I = 0.190. 

We note than the higher-order terms ignored in (3.38) would produce a change 
of under 1 yo at = 0.18. In  figure 6 the values of &12@ on the line p = 0 
are plotted for 1 = 0.512 and 1 = 0.190. These are the most reliable probe measure- 
ments because, since most probe errors are caused by the change in the velocity 
produced by the probe, the velocity is zero in region (4). The theoretical curves 
also displayed in figure 6 have been calculated from (3.37) using the values of 
A, and A, in (3.33), so tha,t these theoretical curves include the second-order 
terms. The agreement between the theory and the experiments is most satis- 
factory for the highest value of l/(lMi), where there is no discernible systematic 
error. On the other hand for 1 = 0.190, where 1/lM& = 0.134, the experimental 
points fall systematically below the theoretical line, a discrepancy we also find 
in the results of figure 3. However, considering the experimental scatter and the 
relatively few number of points, the small difference between the theory and 
experiment in this case is not, we believe, significant. 
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In figure 4(a )  we have plotted the theoretical values of Vl) = v s 1 2 M a J ( q ) / I  
against ( p - I ) M Q ,  on the same graph as the experimental values. These two 
experimental curves were obtained in the one case by using a Pitot tube to 
measure w8 directly, and in the other by measuring 4 and then calculating vg from 
the relation, used in 0 3, 

so that 

As explained by Hunt & - colm, both these different methods have consider- 
able errors and it is therefore of great interest, in assessing the respective re- 
liabilities of these methods, that the theoretical curve which includes the first- 
order correction falls very much closer to the curve calculated from potential 
probe measurements than from the Pitot-tube measurements. This result should 
not be regarded as a final verdict on the relative merits of these two probes for 
two reasons: first, the agreement with the results of the potential probe may be 
somewhat fortuitous because, in calculating these results, a crudely estimated 
error term had to be used; secondly, the Pitot tube was being used in a region of 
large variations in static pressure which also had to be estimated. (The details of 
these calculations are given by Hunt & Malcolm (1968).) However, this result 
and those discussed later do indicate that electric potential probes can give 
reasonably accurate results. 

In  figure 4(b) we have plotted Malcolm’s results and we find that the experi- 
mental velocity profiles follow that calculated from the zero-order theory quite 
closely over a limited range of p ( - 1.0 > ( p  - 1)  M* > 3.0). However, although 
the experimental velocity profile has the same shape as that of the first-order 
theory, the experimental results are greater by an amount 20 yo or more of the 
maximum velocity of the theoretical profile. Further, the value of ql) is greater 
for M = 212 than 390, whereas the theory predicts the reverse. Malcolm (1968) 
suggests that these discrepancies are caused by the magnetic field affecting the 
heat transfer characteristics of the hot-film anemometer. These errors may be 
further increased because the anemometer, as well as recording the azimuthal 
velocity, is also sensitive to a radial velocity which is produced by the small 
secondary flow. For further details of this problem and the transition to an 
oscillatory secondary flow the reader is referred to Malcolm (1968). 

In  figure 5 we have compared the experimental and theoretical values of 
- +12@ = - @cmb2/Ia as a function of ( p  - I) M4 at 5 = 0.97, and 5 = 0.50 for 
I = 0.190. We find that for 5 = 0.97 there is a small, systematic discrepancy 
between our theory and the experimental results, greater than that attributable 
to random errors, for - 1 > (p  - I )  M* > 0.25, in much the same way as with the 
velocity at  5 = 0.97. These discrepancies occur where la2@/8p21 is greatest and 
therefore where the effects of the finite size of the probe are most significant, as 
shown by Hunt & Malcolm. We have not allowed for this error so that the 
discrepancy may be seen. However, this probe error was estimated in calculating 
v8 from the measured values of q5 in figure 4(a), as referred to above. It is also 
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possible that some of the discrepancies, near p = 1 and t: = 1, between our theory 
and the experiments are a result of the finite conductivity of the electrode, which 
our theory does not allow for. When f: = 0.50 and the gradients are more gentle, 
we find satisfactory agreement between the theoretical and experimental values. 

Our main conclusions, then, are these. (i) Those measurements of which we 
feel most confident, namely the resistance between the electrodes and the 
potential distribution on p = 0, differ from the theoretical values by less than 
the experimental error. These provide, therefore, further evidence of the validity 
of the general theory of magneto-fluid-dynamic duct flows, of which $ 3  is an 
example. (ii) It is a characteristic of MHD flows with strong magnetic fields that 
the most interesting phenomena occur in narrow regions parallel to the magnetic 
field and this flow is no exception. Although the flow in these regions is the most 
difficult to measure, the experimental results in region (1) for electric potential 
(and velocity, when calculated from potential measurements) have shown good 
agreement with the theory; at  least where the changes in potential gradient occur 
over distances small compared with the probe size. The experiments of Hunt & 
Malcolm (1968) were among the first measurements of such a region with flow 
conditions such that confirmation of the theoretical velocity and electric potential 
profiles is possible. (iii) As to the merits of the three kinds of probe referred to here, 
namely the Pitot tube, the electric potential probe and the hot-film anemometer, 
we conclude that the electric potential probe is probably the most reliable instru- 
ment, both for measuring potential and for calculating the velocity, when a simple 
relation exists between the electric potential and the velocity. In  many flows 
such a relation does not exist, and in that case for measuring velocity the hot- 
film anemometer used by Malcolm (1968) is probably more satisfactory than the 
Pitot tube. 

While the early part of work described in this paper was being carried out 
one of us (K.S.) benefited from the hospitality kindly provided by Prof. 
G. L. Von Eschen of Ohio State University. During the same period the other 
(J.C.R.H.) was being supported by the U.S. Army Research Office and he 
gratefully acknowledges the hospitality provided by Prof. G. S. S. Ludford 
of Cornell University. Finally, we should like to thank Dr D. G. Malcolm for 
making available his experimental results in advance of publication. 
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